martes, 2 de noviembre de 2010

Campo eléctrico

Campo eléctrico
El campo eléctrico es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica. Matemáticamente se describe como un campo vectorial en el cual una carga eléctrica puntual de valor q sufre los efectos de una fuerza eléctrica dada por la siguiente ecuación:

En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.
Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.
Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.
La unidad del campo eléctrico en el SI es Newton por culombio (N/C), voltio por metro (V/m) o, en unidades básicas, kg.m.s.A.
La intensidad del campo en cualquier punto sería proporcional a la fuerza que experimenta cierta masa dada en dicho punto. Por ejemplo, en cualquier punto cercano a la Tierra, el campo gravitacional podría representarse cuantitativamente por:


g = F/m

Donde :


g = aceleración gravitacional debida a la fuerza de gravedad
F = fuerza gravitacional
m = masa testigo o de prueba


Intensidad de Campo eléctrico


Se dice que un campo eléctrico existe en una región del espacio en la que una carga eléctrica experimente una fuerza eléctrica.
Esta definición suministra una prueba para la existencia de un campo eléctrico. Simplemente se coloca una carga en el punto en cuestión. Si se observa una fuerza eléctrica, en ese punto existe un campo eléctrico.
De la misma manera que la fuerza por unidad de masa proporciona una definición cuantitativa de un campo gravitacional, la intensidad de un campo eléctrico puede representarse mediante la fuerza por unidad de carga. Se define la intensidad del campo eléctrico E en un punto en términos de la fuerza F experimentada por una carga positiva pequeña +q cuando se coloca en dicho punto. La magnitud de la intensidad del campo eléctrico es dada por:


E = F/q



Líneas de campo eléctrico

Dada una distribución de cargas, en cada punto del espacio existe un campo eléctrico. Definimos las líneas de campo eléctrico como aquellas líneas cuya tangente es paralela al campo eléctrico en cada punto.
Una carga puntual positiva dará lugar a un mapa de líneas de fuerza radiales, pues las fuerzas eléctricas actúan siempre en la dirección de la línea que une a las cargas interactuantes, y dirigidas hacia fuera porque las cargas móviles positivas se desplazarían en ese sentido (fuerzas repulsivas). En el caso del campo debido a una carga puntual negativa el mapa de líneas de fuerza sería análogo, pero dirigidas hacia la carga central. Como consecuencia de lo anterior, en el caso de los campos debidos a varias cargas las líneas de fuerza nacen siempre de las cargas positivas y mueren en las negativas. Se dice por ello que las primeras son «manantiales» y las segundas «sumideros» de líneas de fuerza.
 






Permitividad

La permitividad (o impropiamente constante dieléctrica) es una constante física que describe cómo un campo eléctrico afecta y es afectado por un medio. La permitividad del vacío es 8,8541878176x10-12 F/m.
La permitividad está determinada por la tendencia de un material a polarizarse ante la aplicación de un campo eléctrico y de esa forma anular parcialmente el campo interno del material. Está directamente relacionada con la susceptibilidad eléctrica. Por ejemplo, en un condensador una alta permitividad hace que la misma cantidad de carga eléctrica se almacene con un campo eléctrico menor y, por ende, a un potencial menor, llevando a una mayor capacitancia del mismo.
Densidad de carga
Aunque la carga eléctrica es una magnitud cuantizada, cualquier volumen contiene un número tan elevado de partículas eléctricas (electrones o protones) que podemos considerar la carga eléctrica como una magnitud continua.

A la carga eléctrica por unidad de volumen r, se le llama densidad de carga volumétrica:
  que se mide en el S.I. en C/m3

A la carga eléctrica por unidad de superficie s, se le llama densidad de carga superficial:
que se mide en el S.I. en C/m2

A la carga eléctrica por unidad de longitud l, se le llama densidad de carga lineal:
que se mide en el S.I. en C/m




Ley de Gauss

Para conocer una de las propiedades del campo eléctrico se estudia que ocurre con el flujo de éste al atravesar una superficie. El flujo de un campo Φ se lo obtiene de la siguiente manera:

donde da es el diferencial de área en dirección normal a la superficie. Aplicando la ecuación en  y analizando el flujo a través de una superficie cerrada se encuentra que:

donde Qenc es la carga encerrada en esa superficie. La ecuación es conocida como la ley integral de Gauss y su forma derivada es:

donde ρ es la densidad volumétrica de carga. Esto indica que el campo eléctrico diverge hacia una distribución de carga; en otras palabras, que el campo eléctrico comienza en una carga y termina en otra.
Esta idea puede ser visualizada mediante el concepto de líneas de campo. Si se tiene una carga en un punto, el campo eléctrico estaría dirigido hacia la otra carga.

Ley de Faraday

En 1801, Michael Faraday realizó una serie de experimentos que lo llevaron a determinar que los cambios temporales en el campo magnético inducen un campo eléctrico. Esto se conoce como la ley de Faraday. La fuerza electromotriz, definida como el rotacional a través de un diferencial de línea está determinado por:

donde el signo menos indica la Ley de Lenz y Φ es el flujo magnético en una superficie, determinada por:

reemplazando  en  se obtiene la ecuación integral de la ley de Faraday:

Aplicando el teorema de Stokes se encuentra la forma diferencial:

La ecuación  completa la descripción del campo eléctrico, indicando que la variación temporal del campo magnético induce un campo eléctrico.